MORPHUM environmental

Paved Horizons

Mapping A Future Land Use Scenario for the Auckland Region

Joshua Childs GIS and FME Analyst

Overview

- Who is Morphum Environmental and what do we do?
- Why the need for Mapping Future Land use?
- Leveraging FME for modelling
- Issues, tips and tricks

Who are we?

CREATING A FUTURE LAND USE LAYER

Impervious Surface Areas

"Impervious surfaces can be concrete or asphalt, they can be roofs or parking lots, but they all have at least one thing in common—water runs off of them, not through them. And with that runoff comes a host of problems."

- Frazer L, 2006

Esri: Impervious Surface changes in West Houston in 2001, 2006, 2011, and 2016

Frazer L. Paving paradise: the peril of impervious surfaces [published correction appears in Environ Health Perspect. 2006 Jan;114(1):A21]. *Environ Health Perspect.* 2005;113(7):A456-A462.

Why do we care?

- More water quality issues: Increases contaminant run-off and pollution of water bodies
- **More floods:** Decreases the time of concentration and increases peak discharge
- **Reduced stream health**: Increases in-stream temperatures leading to reduction in dissolved oxygen
- Intensified droughts: Prevents groundwater recharge
- Increased temperatures: Collects solar heat, contributing to the "urban heat island" effect.

AUCKLAND AT MAXIMUM PERMITTED DEVELOPMENT (MPD)

At MPD

Auckland Freshwater Management Tool (FWMT)

Overarching goals

- Define why and how bad water quality within the region is
- Identify how much worse it is expected to become due to population growth and changing climate
- Identify what we can do to improve or maintain our water quality

How do we map Maximum Development?

Maximum Development Scenario

- Utilise the Auckland Unitary Plan as a theoretical land development maximum
- Quantify the existing state of land development
- At a parcel scale, assume the "most developed" scenario as the maximum development scenario

Zone	Maximum Impervious Area		
Large Lot	35% of site or 1400 square metres – whichever is the smaller		
Rural & Coastal Settlement	35% of site or 1400 square metres – whichever is the smaller		
Single House	60% of site		
Mixed Housing Suburban	60% of site		
Mixed Housing Urban	60% of site		
Terraced Housing & Anartment Buildings	70% of site		

- Which properties can be further developed?
- ...and by how much?
- Which properties exceed the current zone limit?

Properties at MPD - Future Land Use Parcels

INPUTS:

Primary Parcels (*approx. 550,000*)
 Baseline Existing Land use (*43 Types*)
 AUP/HGI Zones (*87 Zones*)

4. Future Road Networks5. Predicted Traffic Increases

WORKSPACE PARAMETERS

Importing parameters from a spreadsheet and assigning to "parameter attributes"

- Parameter updates can be made outside of FME
- Provides a good way of tracking parameters and any justifications, limitations etc

Input	Parameter Name	Exposed Parameter	Parameter Value - Urban	Parameter Value - Rural	Parameter Type	Query Type	Parameter Description	Justification
stract Opportunity Areas Tool	Minimum Permitted Donut Area (m2)	Yes	10	10	Number		Donut Polygons (interior holes within larger polygons) smaller than this parameter will be removed (m2)	Minor earthworks required or non ground points
Sentify Valid Offtakes Tool	Minimum Offtake Pipe Gradient (0-1)	Yes	0.01	0.01	Number		Minimum slope requirement for ortrakes pipes or diversions. Slope is calculated with Rise over Run calculation. Note that if a device opportunity is represented with a single estimated elevation value, offtake points within the footprint will have an offtake distance of 0. In this the offtake scenario units are identified as a Nice	Minimum pipe gradient
Sentify Valid Offtakes Tool	Maximum Offtake Pipe Distance (m)	Yes	100	20	Number		Maximum offtake pipe or diversion distance permitted between offtake network and perimeter of device footprint. This should be the maximum distance across all device types.	891
Sentity Valid Offtakes Tool	Assumed Device Excavation Depth (m)	Yes	15	0	Number		Assumed excavation depth of device footprint. Generally, a deeper excavation depth will allow for more opportunity by increasing the offtake slope between potential device footprints and offtake points.	Matches lifecycle costing reasonable earthworks
Jentify Valid Offtakes Tool	Device Respresentation Method	Yes	Single Elevation – MEDIA	Points Along Perimeter	Choice List		Method used to estimate device footprint opportunity by sampling raster elevation values. If "Points Along Perimeter" is selected, elevation values will be extracted along the device footprint boundary. Each perimeter point is considered against all offtake opportunities within the offtake search tolerance. If a "Single Elevation" method is used, the polygon is sampled and elevation is extracted using the selected statistical method. •Points Along Perimeter •Finate Elevation . MEET	No significant earthworks costed for Rural Wetlands therefore needs minimum rerouting to connect catchmen to opportunity.

Maximum Developed Properties

- **89%** of properties have development potential

SwizPix: Switching Pervious to Paved

Existing Land Cover switched to represent parcels at maximum impervious coverage

- 475,000 Ha
- Mapping every 2x2 m²

Order of switching is iterative & determined by:

- 1. Existing pervious land use (ranked)
- 2. Slope low slopes changed first

SwizPix: Switching Pervious to Paved

Existing Land Cover

MORPHUM ENVIRONMENTAL

TIPS & TRICKS

Python Caller

- Increased performance on large datasets
- Access to arcpy and other python libs.
- Pass in custom parameters
- Create a seemingly dynamic data combiner

Dealing with BIG Data

- Group by processing

Using the "GroupBy" functionality of spatial intersection tools on large datasets

- Increase processing time
- Enables parallel processing through custom transformers

Dealing with BIG Data

- Python Functions
- Raster and Vector to Dictionaries
 - Getting rid of geometry

• Time Tracking - Life Saver!!

	<pre># Create empty parcel dict points_dict = {} with arcpy.da.SearchCursor(points_layer, [</pre>	FLUL_PARC pointid', LU_Code', Pervious_ AKL_Slope,					
def def	<pre>rint_start_time(): cart_time = time.time() prmatted_start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time)) rint(f"Start Time: {formatted_start_time}") eturn start_time rint end time(start time): </pre>						
en fo el ho mi pr pr	<pre>end_time = time.time() formatted_end_time = time.strftime("%Y-%m-% elapsed_time = end_time - start_time nours, remainder = divmod(elapsed_time, 3600 minutes, seconds = divmod(remainder, 60) print(f"End Time: {formatted_end_time}") print(f"Elapsed Time: {int(hours)} hours and</pre>	Start Time: 2024-01-18 17:01:11 SwizPix Point to Raster Complete. End Time: 2024-01-18 19:04:51 Elapsed Time: 2 hours and 3 minutes. 					

MORPHUM environmental

THANK YOU.

joshua.childs@morphum.com