

STORIES FROM AROUND THE WORLD

LEVEL LEADERBOARD

- Discover FME Innovation
 - Explore New Ideas

1

2

3

Take Inspiration Home

Suncor Energy Inc.

Alonzo de la Cruz, Canada

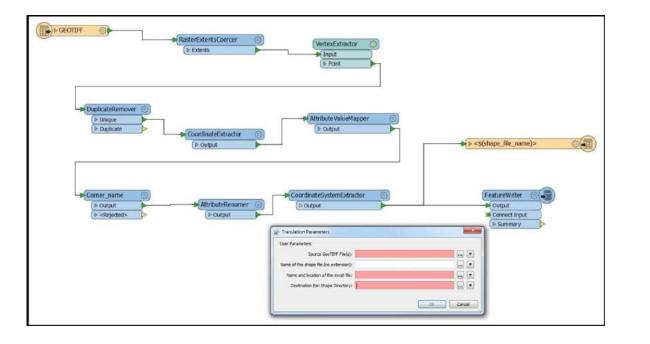
Objectives

Performing geospatial data integration for subsurface engineers.

- Reduce time spent on straightforward but timeconsuming data integration tasks.
- Reduce human error.

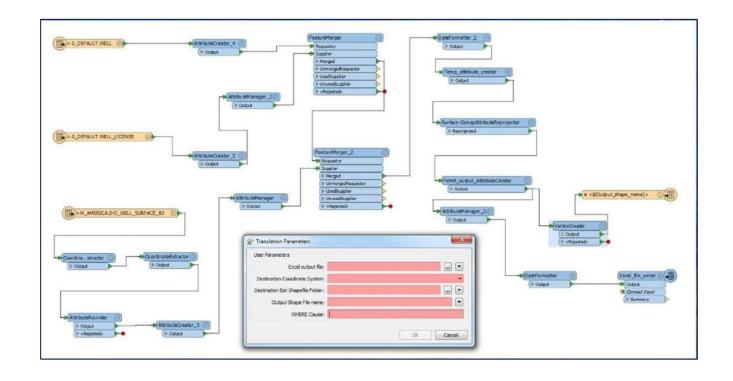
Challenges

- Existing processes involved manual steps across several applications.
- Large data volumes needed cleaning and formatting.


Solution

Source Data from many systems

START


Solution Convert, Manipulate, Clean Usable Data for engineers

FINISH

FME Workspace: Get corners of GeoTIFFs

FME Workspace: Transform data from 3 database tables

Results

- Subsurface teams (geologists & geotechs) access data within minutes of their requests.
- Geospatial data tasks are reduced from hours of manual work to minutes of automated work.

Benefits

Alonzo is the hero at work.

- Data integration reduced from hours to minutes.
- Removed manual work to create an automated process.
- Reduced risk of human error.

Tips

- FME is great for data cleaning and reformatting.
- A simple FME Workspace can be your most powerful tool.

"By automating mundane tasks with FME, you can massively improve the quality of your work, and your work life."

Alonzo de la Cruz, Suncor Energy Inc.

Buccleuch Estates

Christine Brown, Edinburgh, Scotland

Objectives

Increase efficiency of farm maintenance inspections (fences, gates, troughs).

• Automate compiling and delivering farm condition inspection reports.

Challenges

 Existing processes involved manually compiling photos and notes into a Word doc.

 Images and text needed to be converted into a report automatically.

Solution

START

Source data from Trimble device

GPS coordinates and photos **FME** Workflow

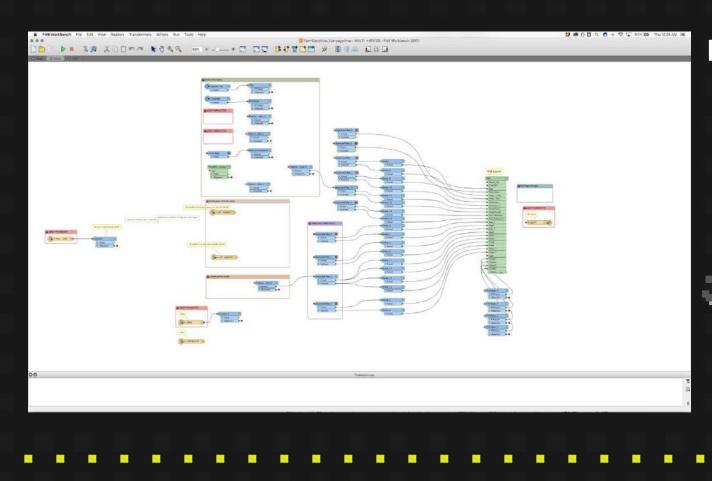
Buffer, read, clip features and attributes **Output to PDF**

FINISH

Farm condition inspection report with photos

BuccleuchEstates Desktop Console

Input: Data from Trimble device



BuccleuchEstates Desktop Console

Input: Shapefiles and photos online

FME Workspace: Generate farm condition report

BUCCLEUCH

Record Of Condition

Around Estate Office

11th December 2018

Contains OS data © Crown copyright and database rights 2018

LOCATION 13

Photo Name: 13 Subject: Wooden Gate Condition: Good condition Remarks:2.4 megapixel

Grid Reference 342,765, 627,335 What3Words: boxing happen.community

LOCATION 14

Photo Name: 14 Subject: Wire Fence Condition: Needs attention Remarks:Sagging wire.

What3Words: ditching.bride.bangle

Output: PDF report

Results

• Multi-page PDF showing two features per page.

• This method is now being tested throughout Buccleuch Estates.

Farm condition reports are created:

- Faster
- More easily
- In a standardized format

Tips

• PDFFormatter and PDFStyler are helpful and easy to use.

• Use Counter and Grouper to 'pass' features in order.

Future Plans

- Expand the attribution data following user feedback.
- Include the option to produce reports in a Word format.

"Using FME with Trimble is a huge time saver for compiling Farm Condition reports."

Christine Brown, Buccleuch Estates

Valeron Enviro Consulting Jaroslav Hruskovic, Slovakia

Objectives

Visualize windfields for urban architects.

 Convert and analyze windfield data models.

Challenges

Windfield data models were previously discarded, unused.

Generate windfield maps.

 Perform analysis and calculations on the data.

Solution

Windfield Matrices

START

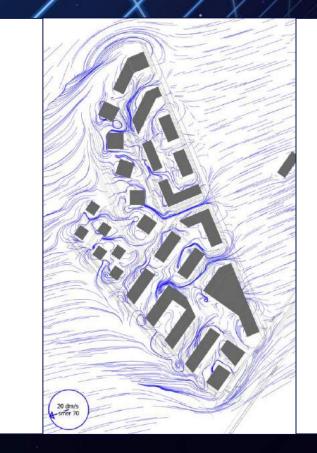
FME Workspace

Calculate, analyze, visualize

Multi-page PDF with results

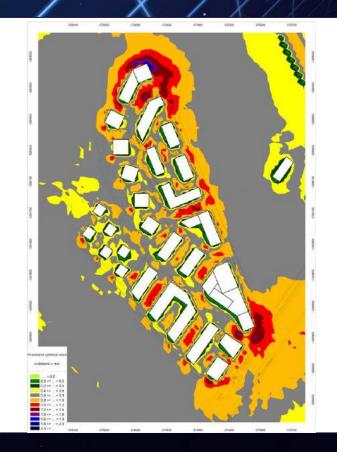
Result

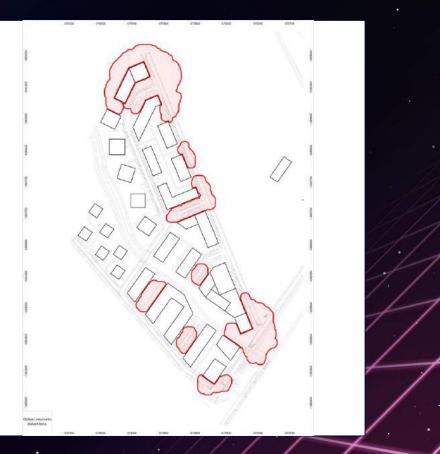
FINISH


konvertovany_vystup.txt

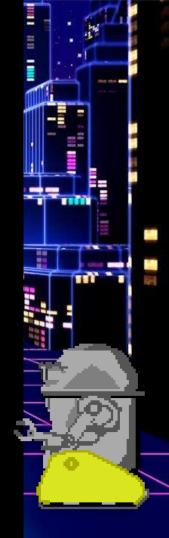
_ 🗆 X

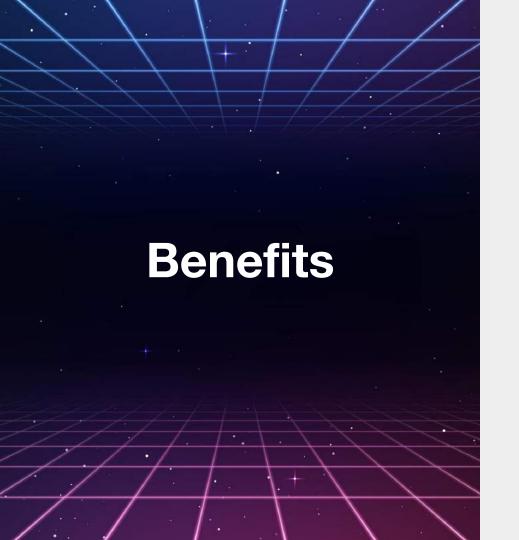
Input




1	x	y uref dref vx vy v
2	Θ	0 20 10 0 0 0
3	Θ	6 20 10 -0.0561478 0 0.0561478
. 4	Θ	12 20 10 -0.0561471 0 0.0561471
5	Θ	18 20 10 -0.0561465 0 0.0561465
6	Θ	24 20 10 -0.0561459 0 0.0561459
7	Θ	30 20 10 -0.0561453 0 0.0561453
8	Θ	36 20 10 -0.0561446 0 0.0561446
9	0	42 20 10 -0.056144 0 0.056144
18	Θ	48 20 10 -0.0561433 0 0.0561433
11	Θ	54 20 10 -0.0561427 0 0.0561427
12	Θ	60 20 10 -0.0561419 0 0.0561419
13	Θ	66 20 10 -0.0561413 0 0.0561413
14	Θ	72 20 10 -0.0561404 0 0.0561404
15	Θ	78 20 10 -0.0561398 0 0.0561398
1,6	Θ	84 20 10 -0.0561389 0 0.0561389
17	Θ	90 20 10 -0.0561383 0 0.0561383
18	0	96 20 10 -0.0561373 0 0.0561373
19	Θ	102 20 10 -0.0561366 0 0.0561366
28	0	108 20 10 -0.0561355 0 0.0561355
21	0	114 20 10 -0.0561349 0 0.0561349
22	0	120 20 10 -0.0561337 0 0.0561337
23	θ	126 20 10 -0.056133 0 0.056133
2.4	Θ	132 20 10 -0.0561317 0 0.0561317
25	Θ	138 20 10 -0.0561309 0 0.0561309
26	Θ	144 20 10 -0.0561295 0 0.0561295
27	0	150 20 10 -0.0561287 0 0.0561287
28	0	156 20 10 -0.0561272 0 0.0561272
29	0	162 20 10 -0.0561264 0 0.0561264
38	0	168 20 10 -0.0561247 0 0.0561247
31	0	174 20 10 -0.0561238 0 0.0561238
32	0	180 20 10 -0.056122 0 0.056122
33 34	0	186 20 10 -0.0561211 0 0.0561211 192 20 10 -0.0561191 0 0.0561191
34	0	
35	0	198 20 10 -0.0561181 0 0.0561181 204 20 10 -0.056116 0 0.056116
37	0	
38		
39	0	
	1570	
48	0	228 20 10 -0.056109 0 0.056109
41 42	0	234 20 10 -0.0561078 0 0.0561078
42	0	240 20 10 -0.0561051 0 0.0561051
43	0	246 20 10 -0.0561038 0 0.0561038
	0	252 20 10 -0.056101 0 0.056101
45	0	258 20 10 -0.0560996 0 0.0560996

Output

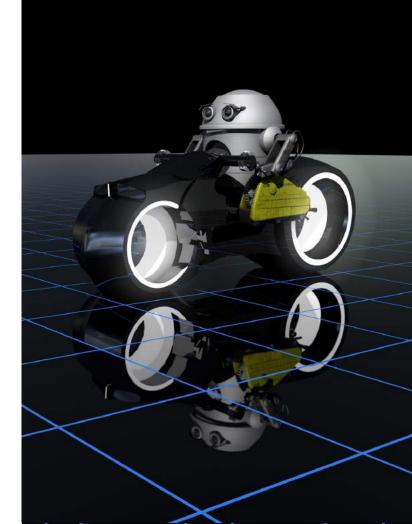



Output

Results

• A fully developed product offering wind analysis.

 In demand by architects, especially for designing outdoor activity spaces.



- Reduced the number of applications to create an automated workflow from many to just one.
- Shortens calculations from days to hours.

Tips

- Complex challenges can be simple to solve.
- **Group-by** makes processing simple.

"With FME this project can be easily modified and the outputs can be updated with ease."

Jaroslav Hruskovic, Valeron Environ Consulting

Future Plans

Extend workflows to identify:

- Typical snow deposition locations.
- Pollen spread for allergen prediction map.

STORIES FROM AROUND THE WORLD

LEVEL LEADERBOARD

- Discover FME Innovation
 - Explore New Ideas

1

2

3

Take Inspiration Home

Tesera Systems

ORLD TOUR

Michael Kieser, Canada

Objectives

Create high-resolution forest inventories.

 Integrate high-resolution raster and precise vector data.

Challenges

 Integrating high-resolution remotely sensed imagery and LiDAR, with precise ground measured plots

 Managing this data over large project areas 10,000-150,000 km².

Solution

Tiling Scheme

Standard across all

projects

START

FME Workspaces Generic across

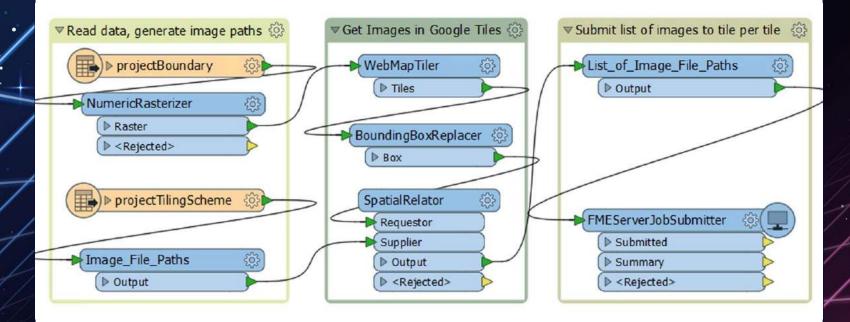
projects

Tiled Project Data Universal data storage & access

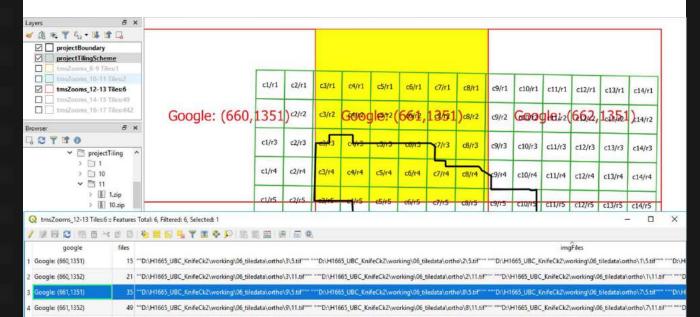
FINISH

Disparate Source Data LiDAR, CIR, LCC, plot

Example (re-tile imagery)


0

- Tiled imagery layers derived from CIR and LiDAR (colour, false colour, NDVI, hillshade, CHM)
- Generate Google Compatible slippy map tiled imagery layers
- Tile layers stored on AWS S3
- Deliver layers in desktop GIS & web viewer (Leaflet, Mapbox)

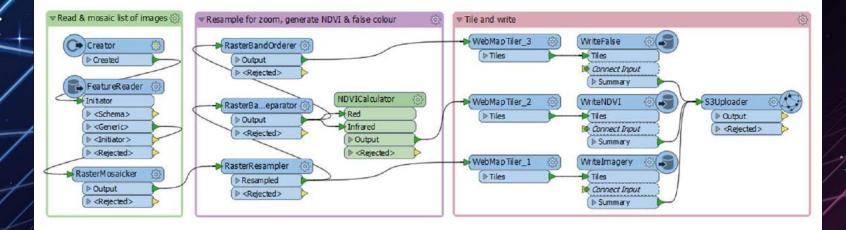

Layers & X														
 ✓ ▲ ● ▼ €₁ • ▶ ↑ □ ✓ projectBoundary ✓ projectTilingScheme ↓ tmsZooms, 0-9 TRes:1 ↓ tmsZooms, 10-11 Tiles:2 	c1/r1	c2/r1	c3/r1	c4/r1	c5/r1	c6/r1	c7/r1	c8/r1	c9/r1	c10/r1	c11/r1	c12/r1	c13/r1	c14/r1
	c1/r2	c2/r2	c3/r2	c4/r2	c5/r2	c6/r2	c7/r2	c8/r2	c9/r2	c10/r2	c11/r2	c12/r2	c13/r2	c14/r2
tmsZooms_12-13 Tiles6 tmsZooms_14-15 Tiles540 tmsZooms_16-17 Tiles5442	c1/r3	c2/r3	e3/13	c 1 ///3	. c5/13	c6/13	7/13	c8/r3	c9/r3	c10/r3	c11/r3	c12/r3	c13/r3	c14/r3
rowser 5 X	c1/r4	c2/r4	c3/r4	c4/r4	c5/r4	сб/г4	c7/r4	c8/r4	1 9/r4	c10/r4	c11/r4	c12/r4	c13/r4	c14/r4
□ ■ projectTiling ^ > □ 1 > > □ 10 * > □ 1.zip > > □ 10.zip > > □ 11.zip > > □ 11.zip > > □ 12.zip > > □ 12.zip > > □ 12.zip > > □ 12.zip > > □ 5.zip > > □ 5.zip > > □ 5.zip > > □ 5.zip > > □ 17.zip > > □ 8.zip >	c1/r5	c2/r5	L .2/15	et/r5	c5/r5	c6/r5	c7/r5	c8/r5	c9/r5	c10/r5	c11/r5	c12/r5	c13/r5	c14/r5
	c1/r6	c2/r6	c3/r6	с4/гб	c5/r6	c6/r6	c7/r6	c8/r6	c9/r6	c10/r6	c11/r6	c12/r6	c13/r6	c14/r6
	c1/r7	c2/r7	c3/r7	c4/17	5/r7	c6/r7	c7/r7	c8/r7	c9/r7	c10/r7	c11/r7	c12/r7	c13/r7	c14/r7
	c1/r8	c2/r8	c3/r8	c4/r8	c5/r8	c6/r8	c7/r8	c8/r8	c9/r8	c10/r8	c11//8	c12/r8	c13/r8	c14/r8
	c1/r9	c2/r9	c3/r9	c4/r9	c5/r9	c6/r9	c7/r9	c8/r9	c9/r9	c10/r9	c11/r9	c12/r9	c13/r9	c14/r9
> [] 9.zip > [] 12	c1/r10	c2/r10	c3/r10	c4/r10	c5/r10	c6/r10	c7/r10	c8/r10	c9/r10	c10/r10	c11/r10	c12/r10	c13/r10	c14/r10
> [] 13 > [] 14 > [] 2	c1/r11	c2/r11	c3/r11	c4/r11	c5/r11	c6/r11	c7/r11	c8/r11	c9/r11	c10/r11	c11/r11	c12/r11	c13/r11	c14/r11
· · · · · · · · · · · · · · · · · · ·														

Input

FMECloud - 1 kick-off job

30 **D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\14\5.tif**** ***D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\13\5.tif**** ***D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\12\5.tif**** ***D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\12\5.tif******

42 ***D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\14\11.tif*** ****D:\H1665_UBC_KnifeCk2\working\06_tiledata\ortho\13\11.tif***



Tilings

.

5 Google: (662,1351)

5 Google: (662,1352)

FMECloud - 491 server jobs

Results

viewer.hris.tesera.com

THE P

1244

Benefits

- Tiling data is fundamental to automation
- FME Workspaces require only a few parameter adjustments for each client
- FMECloud provides scalability

Tip

- BoundingBoxReplacer: 3rd party data
- SpatialRelator: project tile with 3rd party BB
- Process by project tile
- WebMapTiler: static raster tiles
- AWS S3: storing & serving static raster tiles
- Can't wait for vector tiles in FME

"FME Cloud is a critical tool for orchestrating and running our integration processes."

Michael Kieser, Tesera Systems

Australian Rail Track Corporation (ARTC) Mike Gresham, Australia

Objectives

Visualize properties for the design & feasibility phase of railway construction.

 Create geospatial representations of land access agreements.

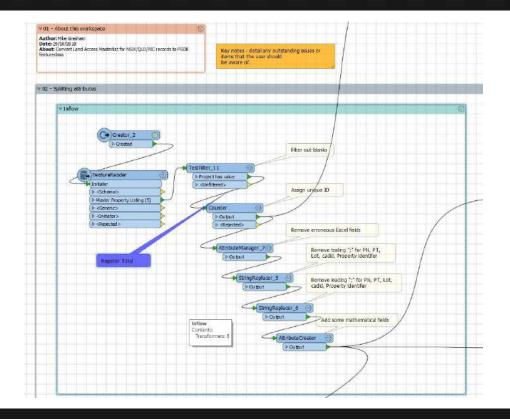
Challenges

 Integrate an Excel register of land access agreements with GIS land parcel data.

Agreements may contain multiple land parcels.

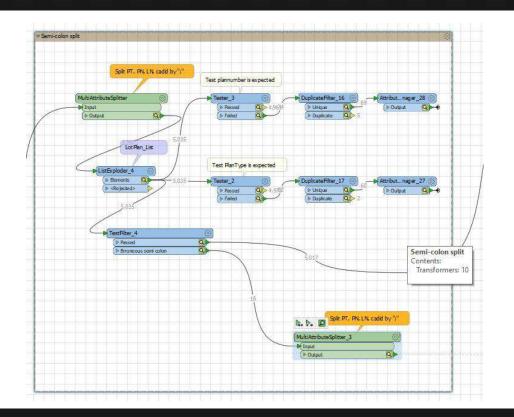
 Program covers three states with unique cadastral identifiers.

Solution


Excel Land Agreements + GIS Land Parcels

START

FME Workspace

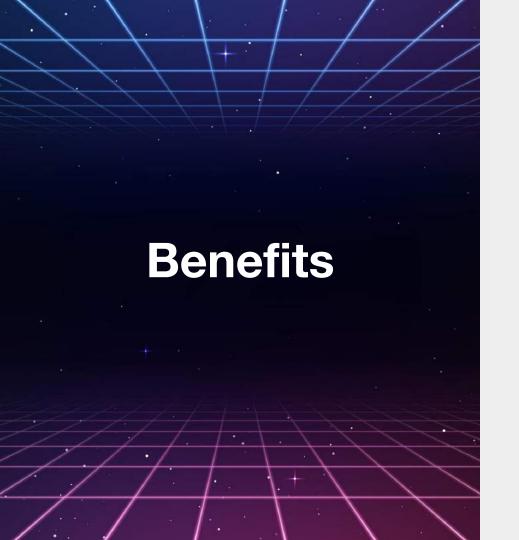

Split, join, cache, and validate land agreement data Comprehensive GIS Layer

FINISH

FME Workspace

FME Workspace

Output Data


Results

• Visualization of properties and related access agreements.

• Lowers risk of trespassing.

Ensures amicable relationships with land owners.

 Ordinary GIS software would not have been able to accomplish this process.

• Automated daily updates.

Tip

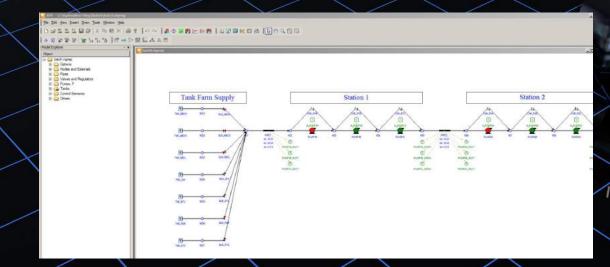
Take time to understand
 FME's unique capabilities,
 how they work, and how they
 contribute to the end result.

"FME produced a result where mainstream GIS software couldn't without the use of scripting."

Mike Gresham, ARTC

Plains Midstream Canada

Patrick Cheng, Canada


Objectives

Create models for simulating fluid in pipelines.

- Automate data integration for pipeline design, optimization, and leak detection.
- Keep up-to-date with business demands of using hydraulic profiling/pressure models.

Challenge

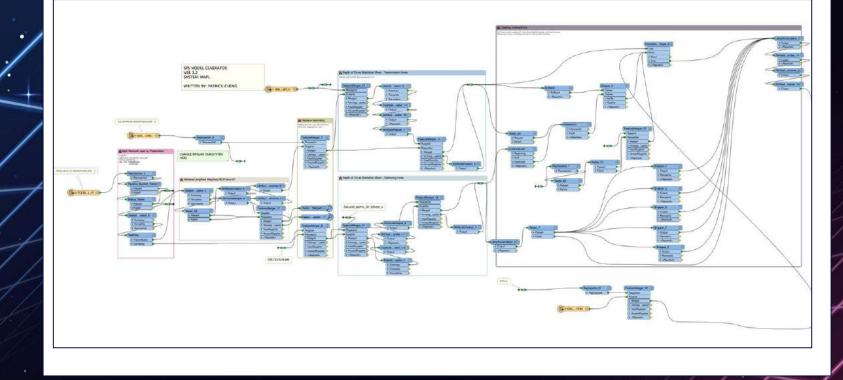
Automate a previously month-long model creation process.

Solution

START

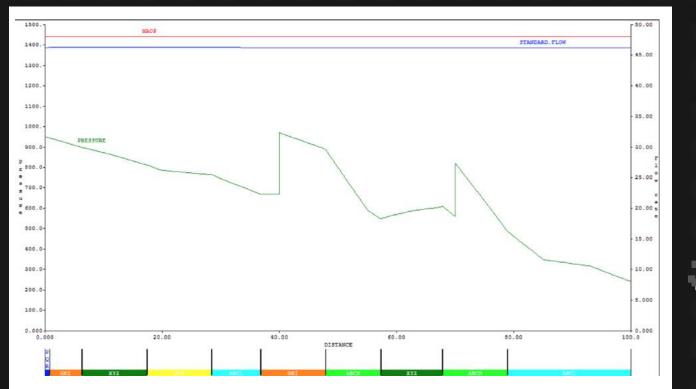
GIS spatial data + PODS attribute data FME Workflow

Integrate data and convert into a textbased format SPS


FINISH

Fully functioning system

FME Workspace



=LIQUID =TRANSTHERMAL

DEFUNITS MICROM = IN / 3.93701e-05 DEFUNITS GPM-PSI.5 = MB/D-PSI.5 / 0.0342857 DEFUNITS USG/MIN-PSI.5 = MB/D-PSI.5 / 0.03428634 DEFUNITS MPAA = PSIA / 6894.735 DEFUNITS MM3/H = MB/D / 6624.469 DEFUNITS MPAA = PSIA / 0.0001450382 DEFUNITS MM3/H_ = MB/D / 0.0001509555 DEFUNITS MPA = PSIA / 145.0382 DEFUNITS DTYW = HP / 1.341093 DEFUNITS HCD = BTU/HR-FT-DF / 577.8213 DEFUNITS HTSF = PSI-FT/SEC-DF / 0.2643652 DEFUNITS KCAL/M3 = BTU/FT3 / 0.1123275 DEFUNITS GALLON = MB / 42000 DEFUNITS #/HR = MB/D / 0.0002777778 DEFUNITS MPH = FT/S / 5280 DEFUNITS YARDS = IN / 36 DEFUNITS YARD = IN / 36 DEFUNITS YRD = IN / 36 DEFUNITS 8M3/YR = MB/D / 17234.08 DEFUNITS GPH = MB/D / 0.0005714286 DEFUNITS GPD = MB/D / 2.380952e-05 DEFUNITS GAL = MB / 2.380952e-05 DEFUNITS MCF = MB / 0.1781077 DEFUNITS NN = MB/D / 1509.55 DEFUNITS NN1 = MAB/D / 1509.55 DEFUNITS T/D = LBM/S / 0.0255165 DEFUNITS W/M-DC = BTU/HR-FT-DF / 0.5778213 DEFUNITS W/M2-DC = PSI-FT/SEC-DF / 0.0002643652 DEFUNITS -KW = HP / 1.341093 DEFUNITS CMPS = MB/D / 0.001840136 DEFUNITS WM3/D = MB/D / 62.89811 DEFUNITS MPAG = (PSIA - 14.696) / 145.0383 DEFUNITS KM3/H = MB/D / 150.9555 DEFUNITS MW = HP / 1341.022 DEFUNITS YIM3/YEAR = MB/D / 1797.087 DEFUNITS NN_ = MB/D / 62.89811 DEFUNITS NN1_ = MAB/D / 62.89811 DEFUNITS MPA_ = (PSIA - 14.696) / 145.0383 DEFUNITS WF/D = MB/D / 62.89811 DEFUNITS YF/A = MB/D / 1723.408 DEFUNITS MPAA_ = PSIA / 145.0382 DEFUNITS WM3/H = MB/D / 1509.555 DEFUNITS LI = IN / 19685.04 DEFUNITS LBM/H = LBM/S / 0.0002777778 DEFUNITS MPAA___ = PSIA / 6094.735 DEFUNITS MPAA___ = PSIA / 0.0001450382 DEFUNITS MPA__ = PSIA / 145.0382

Output

Output

Results

- A fully functioning system replaces models.
- 1 month of effort has been reduced to 1-2 hours.

- Increased standardization and accuracy of pipeline attributes.
- Automation of model creation.
- Time is saved to free up resources and staff workload.

Tips

- ListBuilder, Sorter, and Concatenator are helpful for creating multiline attributes.
- ExpressionEvaluator is helpful for creating scaling factors.
- StringConcatenator is helpful for generating script syntax.

"I have definitely seen a much greater scope of functionality for FME that is not limited to just GIS data."

Patrick Cheng, Plains Midstream Canada

Steven Cyphers, California, USA

urFinder + I

WORLD TOUR

奥

Objectives

Gather business intelligence from monetary data.

- Analyze company spending for abnormalities.
- Find investment diversification opportunities.

Challenges

 Large data volumes. Must extract relevant data from 21 million filings (450 GB).

Cleaning, formatting, and categorizing unstructured text.

Solution

START

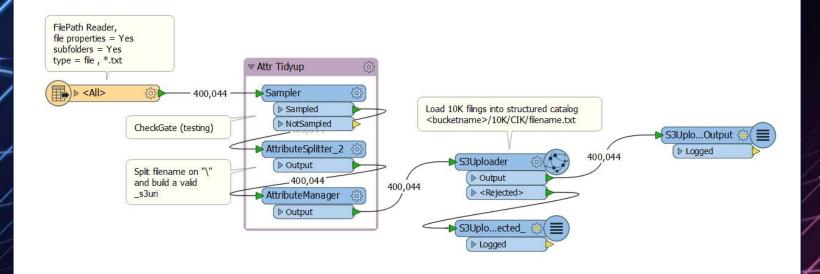
FME Workspace

Pull filings from the web via API.

EDGAR Files

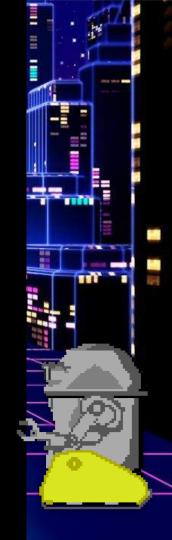
Pull, retrieve, aggregate, & apply machine learning.

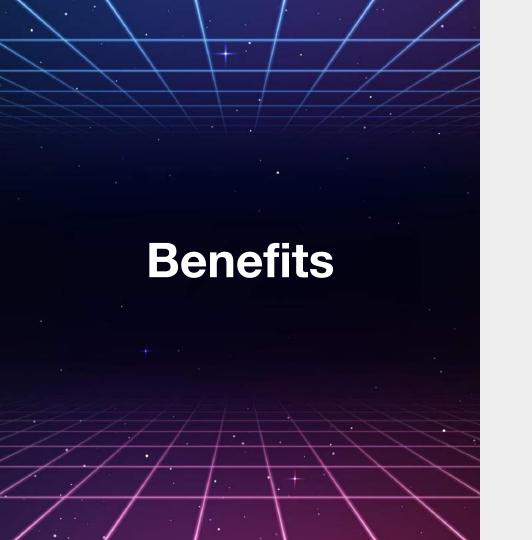
Data Collation


FINISH

Put into SAP HANA for further BI tasks.

				······
AMAZON COM INC	10-Q	1018724	2018-10-26	edgar/data/1018724/0001018724-18-000159.txt
AMAZON COM INC	4	1018724	2018-10-31	edgar/data/1018724/0001018724-18-000165.txt
AMAZON COM INC	4	1018724	2018-10-31	edgar/data/1018724/0001018724-18-000166.txt
AMAZON COM INC	4	1018724	2018-10-31	edgar/data/1018724/0001018724-18-000167.txt
AMAZON COM INC	4	1018724	2018-11-06	edgar/data/1018724/0001018724-18-000169.txt
AMAZON COM INC	4	1018724	2018-11-16	edgar/data/1018724/0001018724-18-000171.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000183.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000184.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000185.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000186.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000187.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000188.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000189.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000190.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000191.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000192.txt
AMAZON COM INC	4	1018724	2018-11-19	edgar/data/1018724/0001018724-18-000193.txt
AMAZON COM INC	4	1018724	2018-11-21	edgar/data/1018724/0001018724-18-000196.txt
AMAZON COM INC	4	1018724	2018-11-21	edgar/data/1018724/0001018724-18-000197.txt
AMAZON COM INC	4	1018724	2018-11-30	edgar/data/1018724/0001018724-18-000200.txt
AMAZON COM INC	8-K	1018724	2018-10-25	edgar/data/1018724/0001018724-18-000157.txt
AMAZON COM INC	CORRESP	1018724	2018-10-12	edgar/data/1018724/0001018724-18-000155.txt
AMAZON COM INC	IRANNOTICE	1018724	2018-10-26	edgar/data/1018724/0001018724-18-000161.txt
AMAZON COM INC	UPLOAD	1018724	2018-10-01	edgar/data/1018724/0000000000-18-030959.txt
AMAZON COM INC	UPLOAD	1018724	2018-10-24	edgar/data/1018724/0000000000-18-033312.txt


FME Workspace



Results

Data is in SAP HANA for business intelligence:

Financial data collation.
Keywords are flagged for further exploration.

 Gathered publicly available data and derived business intelligence for a competitive edge.

"I would never want to tackle this with just Python, Spark or AWS Glue. I use FME for everything."

Steven Cyphers, GHD

Tip

AttributeManager + HTTPCaller are your BFFs for building APIs.

Santa Clara County

ORLD TOUR

Steven Hong, California, USA

Objectives

- Improve the call location accuracy and response time for 911 dispatch system.
- Empower cities to become data stewards and contribute addresses on a regular basis.

Challenges

Aggregate and standardize 15 different city data schemas.

Supplement data schemas with public safety layers.

Solution

START

FINISH

15 unique city datasets

FME Workflow

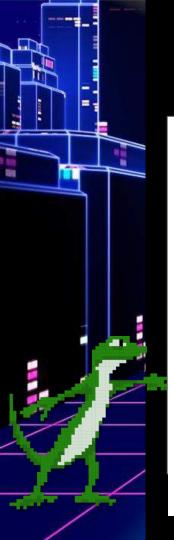
Transform the data into standardized schemas

Aggregated address datasets: RAM + RAMPS

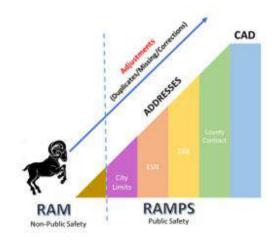
Assessor Address Points

PRE- RAMPS

City-sourced Address Points


RAM/RAMPS

Results


- Cities are empowered to contribute accurate addresses to a county-wide aggregation.
- Project completed on time.

Results

50% increase in number of addresses available to 911 operators

Benefits

- Allowed for fast, iterative changes to workflows as new data was discovered.
- Flexibility means being prepared for future changes.

Tip

 DuplicateFilter helps identify duplicate data points (a great help for a 911 dispatcher working with addresses)

"FME's ability to generate multiple formats within the same workflow is a huge timesaver."

Steven Hong, County of Santa Clara

ourFinder - L

WORLD TOUR

999

Objectives

Improve road safety with a new Safe View product.

- Analyze roads and calculate overtaking visibility and limitations.
- Scalable, automated process.

Challenges

 Developing a methodology. Workflow allows for varying input/scenarios.

 Handling large data volumes of high-accuracy LiDAR.

Building an optimised, scalable workflow that can perform billions of calculations quickly and accurately.

Solution

START

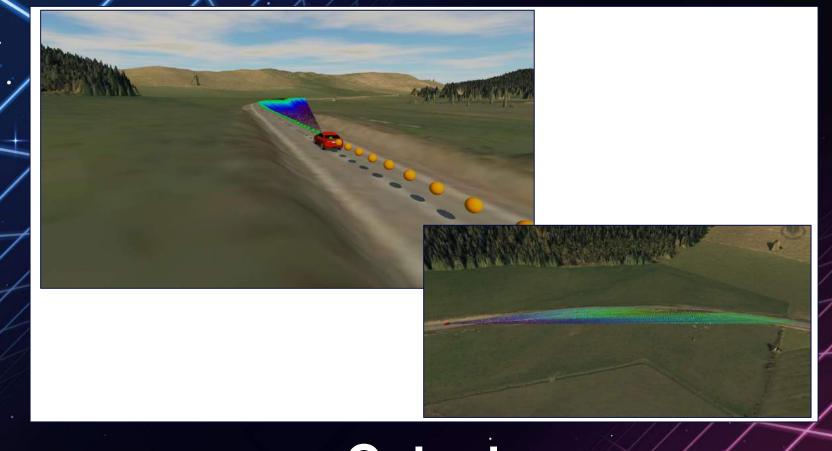
Road Centerline Digital Surface Model/ LiDAR

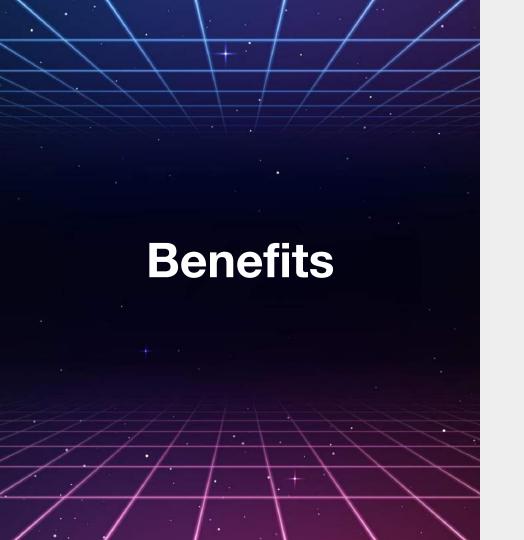
FME Workspace

Integrate datasets, calculate visibility

Visibility Obstruction Dataset

FINISH





Results

- Safe View was field validated and accepted as accurate by the New Zealand Transport Agency.
- Scalable road safety product that can be utilised anywhere within the world.
- Enhanced existing road safety processes.



- Allows roading authorities to have confidence in their placement of yellow "no overtaking" lines.
- Highlights area that can be considered for minor realignment, regrading, or vegetation management to create or extend overtaking opportunities.

Tip

- Point Cloud processing in FME is very fast.
- Point Clouds don't need to have geometry.
- Getting rid of attributes/components that aren't used will make your process run quicker.

"FME enabled us to add value to existing datasets, re-purposing and leveraging data that was already captured."

Todd Davis, Abley